正是在这里,我们第一次意识到了那些高级个体性的生存,它们的降生、成长和衰败构成了真正的历史实体,支撑着历史表面那缤纷的色彩和万千的变化。古典精神大约在公元前1100年诞生于爱琴海的周边地区,它在罗马人那冷冰冰的才智中步入了其最后的阶段,而整个的古典文化及其所有的作品、思想、伟绩和废墟,则构成了这一精神的&ldo;实体&rdo;(body)。阿拉伯文化在古典文明的掩护下自奥古斯都时代开始便在东方生根发芽,然后遍及自亚美尼亚到南阿拉伯、自亚历山大里亚到忒息丰的广大地区,因此,我们不得不称罗马帝国的几乎整个&ldo;晚期古典&rdo;艺术、东方所有年轻而热忱的宗教‐‐曼达派(andaeanis)、摩尼教(ani插eis)、基督教、新柏拉图主义等,皆是这一新的心灵的表现,而在罗马本土,跟帝国广场群(iperialfora)一样,万神庙(pantheon)堪称是第一清真寺。
亚历山大里亚和安条克(antioch)的人们仍在用希腊语写作,并认为他们也是在用希腊语思考,这一事实并不重要,如同直到康德时代拉丁语还是西方人的科学语言、以及查理曼&ldo;复兴&rdo;罗马帝国这样的事实没什么重要一样。
在丢番图那里,数已不再是有形事物的度量和本质。在拉韦纳的马赛克中,人不再是一个实体(body)。不知不觉地,希腊人的那些名称已经失去了其原初的含义。我们已经离开了阿提卡的κα&labda;&oicron;κα&gaa;αθια(高贵)的斯多葛学派的αταραξια(不动心)和&gaa;α&labda;ηνη(恬淡)的领域。确实,丢番图尚不知有零和负数,但他也不再使用毕达哥拉斯学派的数。阿拉伯数字的这种不确定性也与后来西方数学中的受到控制的可变性,即函数的可变性,有相当的不同。
麻葛式的数学‐‐我们可以看到其大概,尽管对其细节尚无认识‐‐经由丢番图(显然,他并非)大胆而合乎逻辑的改造,至阿拔斯时期(abbassidperiod)(公元9世纪)达致巅峰,我们在花拉子密(al-khwarizi)和阿尔西德施(alsidzshi)那里可以欣赏到这种数学。并且,如同欧几里得几何学之于阿提卡雕塑,以及空间分析之于复调音乐一样(它们皆是同一表现形式的不同表达媒介而已),这种代数学之于麻葛式的艺术及其马赛克、阿拉伯风格的图案(萨珊帝国和后来的拜占廷皆以一种越来越铺张奢华的、有形或无形的有机主题生产着这种风格)和它的君士坦丁式的高浮雕(在那里,不确定的深度阴影区隔着前景中处理自如的形象),亦是同一表现形式的不同媒介而已。如同代数学之于古典算术和西方人的数学分析一样,圆顶教堂之于多立克式的庙宇和哥特式的教堂,则属于相同的媒介的不同表现形式。这不是说丢番图就是一个伟大的数学家。相反,我们已经习惯于将他的名字和许多东西联系在一起,而实际上那并非他一个人的成就。他的出乎意外的重要性在于这样一个事实,即就我们的知识所及而言,他是第一个明确无误地表现出那种新的数字感的数学家。相比较于那些总结数学发展的大师,如阿波罗尼乌斯和阿基米德,又如高斯、柯西(cauchy)和黎曼,丢番图的工作,尤其是在形式语言方面,还是相当原始的。这些原始的工作,直到今天,我们还常常用它来指称&ldo;晚期古典&rdo;数学的衰微,现在,我们则应当学会理解和评价它,一如我们正在修正我们的蔑视&ldo;晚期古典&rdo;艺术的观念并开始在那里认识新生的早期阿拉伯文化初试啼音一样。类似地,利雪(lisieux)的大主教尼古拉斯&iddot;奥里斯梅(1323~1382年)的数学也是古代的、原始的和处在摸索之中的:他是第一个灵活地运用坐标系来进行数学表述‐‐尤其重要的是‐‐并用它来描述等加速运动的西方人,这两种工作都以一种数字感为前提,这种数字感可能还模糊不清,但却是明确无误的,它完全是非古典的,也是非阿拉伯的。但是,如果我们进一步地把丢番图和罗马藏品中的早期基督教石棺、把奥里斯梅和德国教堂中的哥特式雕塑放在一起思考,就能看到数学家和艺术家在某些方面是共同的,那就是,他们都处在各自文化的抽象理解的相同(亦即原始)水平。在丢番图所处的世界和时代里,测体术的边界感‐‐很久之前在阿基米德那里就已经达到了与大都市的才智相匹配的最完善精细的阶段‐‐已经消失。在那整个世界里,人们都是不清醒的,是饥渴的和神秘主义的,不再像阿提卡人那样洒脱自如;他们是植根于年轻的乡村土地的一群人,不像欧几里得和达朗贝尔是植根于大都市的都市人。他们不再理解古典思想那深刻而复杂的形式,而他们自己的思想又是混乱的和新生的,和城市一样远未达到明晰和整洁的程度。他们的文化还处在哥特式的状态,一如所有文化在年轻的时候一样,甚至如同古典文化在多立克早期阶段‐‐我们现今对它的了解只能通过它的狄甫隆陶瓶‐‐的情况一样。只有到公元9至10世纪的巴格达,丢番图时代的年轻观念才经由具有柏拉图和高斯这种能力的成熟的大师而得以彻底完成。
八
笛卡儿的几何学出现于1637年,他的决定性的行为,不在于在传统的几何学领域引入了一种新的方法或观念(正如我们时常这么认为的),而在于他为一种新的数字观念引入了一个明确的概念,通过这一概念,使几何学摆脱了视觉上可认知的结构和一般的被度量或可度量的线条的束缚。由于笛卡儿的几何学,对无穷的分析变成了事实。严谨的、所谓笛卡儿式的坐标体系‐‐一种半欧几里得式的、可理想地表达可度量的量的方法‐‐其实早就为人所知(奥里斯梅就是见证),并一直被认为具有极度的重要性,而当我们对笛卡儿的思想穷根究底一番之后,便能发现,他所做的并不是完善了而是克服了那一体系。其最后的历史代表就是笛卡儿同时代的费马。
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:万古神帝之济天尊 废土回响者 我于寂静之时,大开杀戒! 余生请多指教 我,霸总,开始咸鱼 原来总裁不是gay 天后写手的108种技能包 玫瑰瓣 老来伴 太女观察日志 影帝的小风衣 游戏成真,我在现实成仙了 (洪荒)我做截教大师兄那些年 馋 男主总是在装逼 偏要继承家产 [清穿同人]端敏公主的团宠日常 系统之拯救黑化皇子 小帅哥你别跑啊[电竞] 海上月离